
www.manaraa.com

The Network Weather Service� A Distributed

Resource Performance Forecasting Service for

Metacomputing

Rich Wolski a�� Neil T� Spring b�� Jim Hayes b��

aUniversity of California� San Diego and University of Tennessee� Knoxville
bUniversity of California� San Diego

Abstract

The goal of the Network Weather Service is to provide accurate forecasts of dy�
namically changing performance characteristics from a distributed set of metacom�
puting resources� Providing a ubiquitous service that can both track dynamic per�
formance changes and remain stable in spite of them requires adaptive programming
techniques� an architectural design that supports extensibility� and internal abstrac�
tions that can be implemented e�ciently and portably� In this paper� we describe
the current implementation of the NWS for Unix and TCP�IP sockets and provide
examples of its performance monitoring and forecasting capabilities�

Key words� network weather� network monitoring� performance prediction�
metacomputing� network�aware� distributed computing

� Introduction

Increasingly� high�quality networks have made it possible for users to employ
widely dispersed computational and data resources� While the pervasiveness of
the world wide web illustrates one obvious example� almost all computational
constituencies have come to expect that some form of network connectivity
will be attached to all potentially useful resources�

� Supported by DARPA N������	
�C���
� and NSF ASC�	
��



� Supported by Department of Defense Modernization Program �NAVO�
� Supported by NPACI �NSF�



www.manaraa.com

With ubiquitous connectivity comes the ability to choose between otherwise
equivalent resources based on their perceived performance� For example� stu�
dents sharing resources in the computer science department at UCSD fre�
quently try to choose the most lightly loaded server for their activities� How�
ever� it is not the current load on each system that interests them but� rather�
an estimate of what the load will be in the near future when they execute
a program� They use information available from the system �e�g� Unix load

average� the number of users currently logged in� who those users are� what
programs are currently running� etc�� to predict what performance will be
delivered to their program�

In this paper we describe the latest implementation of theNetwork Weather

Service �NWS�� a distributed� generalized system for producing short�term
performance forecasts based on historical performance measurement� The goal
of the system is to dynamically characterize and forecast the performance de�
liverable at the application level from a set of network and computational
resources� Such forecasts have been used successfully to implement dynamic
scheduling agents for metacomputing applications �����	� and to choose be�
tween replicated web pages �
	�

Implementing the NWS to operate in a variety of metacomputing and dis�
tributed environments� each with its own dynamically changing performance
characteristics� has illuminated the utility of adaptive programming tech�
niques� distributed fault�tolerant control algorithms� and an extensible sys�
tem architecture� We focus on the role of these methodologies in building and
deploying the system�

The next section discusses the design goals for� and the overall architecture
of� the current NWS implementation� The remaining sections of the paper
describe the function of the system�s core component processes and how they
combine to form a generalizable service for managing dynamically chang�
ing performance information� Section � describes naming and persistent state
management that the system uses internally� Section � describes performance
monitoring facilities used by the system� Section 
 describes the forecasting
features that are currently supported� and Section � details the programming
and web interfaces that are available� In Section �� we focus on some of the
adaptive control and fault�tolerance mechanisms implemented throughout the
system� Section � discusses related e�orts� and in Section � we summarize the
work and discuss future research goals�

�



www.manaraa.com

� System Architecture

The design of previous NWS implementations ��
������	 focused on providing
the functionality necessary to investigate the e�ectiveness of dynamic schedul�
ing in local� medium� and wide�area computational settings �����	� These im�
plementations did not scale well� however� and lacked the robustness necessary
to make the NWS a reliable system service� Moreover� we wished to extend
the monitoring and forecasting capabilities of the system to meet the needs
of various performance�oriented distributed software infrastructures such as
Globus �
�	� Legion �
�	� Condor ���	 and Netsolve ��	� As such� we hoped to
improve the portability� the extensibility� and the reliability of the system over
prior implementations�

The NWS is designed to maximize four possibly con�icting functional char�
acteristics� It must meet these goals despite the highly dynamic execution
environment and evolving software infrastructure provided by shared meta�
computing systems ��	�

� Predictive Accuracy� The NWS must be able to provide accurate esti�
mations of future resource performance in a timely manner�

� Non�intrusiveness� The system must load the resources it is monitoring
as little as possible�

� Execution longevity� To be e�ective� the NWS should be available at any
time as a general system service� It should not execute and complete � its
execution lifetime is logically inde�nite�

� Ubiquity� As a system service� the NWS should be available from all po�
tential execution sites within a resource set� Similarly� it should be able to
monitor and forecast the performance of all available resources�

We have constructed the current NWS using using four di�erent component

processes�

� Persistent State process� stores and retrieves measurements from persis�
tent storage�

� Name Server process� implements a directory capability used to bind pro�
cess and data names with low�level contact information �e�g� TCP�IP port
number� address pairs��

� Sensor process� gathers performance measurements from a speci�ed re�
source�

� Forecaster process� produces a predicted value of deliverable performance
during a speci�ed time frame for a speci�ed resource�

Each of these component processes� represented in Figure 
� can communicate
with other processes only through strongly typed messages� Their implemen�
tation may be improved or replaced by appropriate standard implementations

�



www.manaraa.com

as they become available�

Workstation 2

Workstation 1

Workstation 3

F

NS

Client

SPS

F: Forecaster
S PS

S
PS: Persistent State
S: Sensor
NS: Name Server

Fig� �� NWS Processes distributed across three workstations� The Name Server
resides on only one host in the system� Sensors monitor the performance character�
istics of networks and processors and send their measurements to Persistent State
managers� The Forecaster acts as a proxy for application scheduling clients and
user queries� Workstation � can be integrated in the system without any associated
storage space� since its persistent state is managed on Workstation 
�

At present� each of the �ve process abstractions has been implemented in C�
for Unix� using TCP�IP socket networking facilities as the underlying com�
munications transport� Our choice of Unix and TCP�IP sockets as an initial
programming platform stems from their nearly exclusive use by extant meta�
computing infrastructures such as Globus �
�	 and Condor ���	� The remainder
of this paper� therefore� focuses on the implementation of the NWS for Unix
and Unix networking via sockets�

� Naming and State Management

To make the system more robust� all NWS processes are stateless� Persistent
state � state that must be able to survive the failure of a process� memory �
is managed explicitly throughout the system using Persistent State processes�
Each Persistent State process provides a simple text string storage and re�
trieval service and allows each stored string to be associated with an optional
time stamp� Each storage or retrieval request must be accompanied by the
name of the data set that is to be accessed� and any data that is sent to a
Persistent State process is immediately written to disk before an acknowledge�
ment is returned� Since the function of the NWS is to generate forecasts which
lose their utility after their epoch passes� the system does not maintain any
data inde�nitely� Each �le that a Persistent State process uses is managed
as a circular queue� the length of which is a con�guration option� Data to
be archived inde�nitely must be fetched and stored in some more permanent
medium outside the NWS before the queue �lls�

The NWS also maintains its own primitive but highly portable naming and
directory service to manage name�location bindings� In the current implemen�

�



www.manaraa.com

tation� a name is a human�readable text string� and a location is a TCP�IP
address and port number� but all data are manipulated as text strings� At
present� the Name Server process that implements this functionality is based
on the more general Persistent State process� This relationship is purely an en�
gineering expediency� however� as the circular queue management techniques
implemented for Persistent State storage are cumbersome to use to implement
a directory service� We are� therefore� converting the Name Service to use an
implementation of the Lightweight Directory Access Protocol ���	 �LDAP��

The address of the NWS Name Server process is the only well�known address
used by the system� allowing both data and services to be distributed � � All
other NWS processes register their name�location bindings with the Name
Server� These bindings time out according to a time�to�live speci�cation that
must accompany each registration� Active processes� therefore� must register
their bindings periodically� This approach provides a simple �heartbeat� that
is process speci�c� We are considering the use of the Globus Heartbeat Mon�
itor �
�	 as an implementation platform for this functionality as part of our
future development�

We anticipate that state storage and name service functionality will eventu�
ally be provided by lower�level metacomputing services� such as the Globus
Metacomputing Directory Service �
�	 and the Legion Resource Directory Ser�
vice ��	�

� Performance Monitoring

The problems associated with gathering accurate performance measurements
from active computational and network resources continue to pose signi�cant
research challenges �����
�
��������
�	� In general� there is a tension between
the intrusiveness of a monitoring technique and the measurement accuracy
it provides� The NWS attempts to use both extant performance monitoring
utilities and active resource occupancy to measure performance� The current
implementation supports measuring the fraction of CPU time available for
new processes� TCP connection time� end�to�end TCP network latency� and
end�to�end TCP network bandwidth�

� At present� the Name Server is centralized� but we plan to leverage the distribution
facilities of LDAP once they become available�






www.manaraa.com

��� NWS Sensors

The function of an NWS Sensor is to gather and store time stamp�performance
measurement pairs for a speci�c resource� Each Sensor process may measure
several di�erent performance characteristics of the resource it is sensing� The
TCP�IP network Sensor� for example� provides both bandwidth and end�to�
end round�trip latency measurements� but each set of measurements is named
and stored separately� That is� a Sensor does not attempt to correlate the
separate performance characteristics of a resource it monitors� However� since
a Sensor attaches a time stamp to each measurement it takes� di�erent types
of measurements may be associated by matching their time stamps� While we
have implemented several di�erent Sensors �described below� any process that
can generate time stamp�measurement tuples� store them with a Persistent
State process� and register their location with a Name Server process can
contribute data to the system�

��� CPU Sensor

The NWS CPU Sensor combines information from Unix system utilities up�
time and vmstat with periodic active CPU occupancy tests to provide mea�
surements of CPU availability on timeshared Unix systems� CPU availability
is measured as the fraction of CPU occupancy time a full�priority standard
user process can obtain� Typically� the uptime utility reports load average as
the average number of processes in the run queue over the past one� �ve� and
�fteen minutes� The CPU Sensor uses the one�minute measurement to calcu�
late the fraction of the CPU occupancy time that a process would get if it
were to run at the moment the uptime measurement were taken� From vmstat

output� the CPU Sensor uses a combination of idle time� user time� and system
time measurements to generate an estimate of the available CPU occupancy
fraction ��
	�

Since these utilities generate their reports using internal Unix system vari�
ables� invoking the utilities presumably does not generate signi�cant load�
That is� they are fairly non�intrusive monitoring utilities� However� both may
leave out considerable information that can a�ect measurement of CPU avail�
ability� For example� neither uptime nor vmstat provides information on the
priority of processes presently running on the system� In order to obtain more
accurate measurements� the CPU Sensor incorporates active probes into its
calculations� It periodically runs an arti�cial� compute�intensive �probe� pro�
gram and calculates the CPU availability as the ratio of its observed CPU
occupancy time to the wall�clock time of its execution� The Sensor then com�
pares the results of these probes to the measurements taken using uptime and

�



www.manaraa.com

vmstat and uses the utility that is reporting the most accurate information�
Typically� the probe process is run much less frequently than measurements
are gathered from vmstat or uptime� When all three values are taken simulat�
neously� the probe is treated as �ground truth� and used to bias subsequent
uptime and vmstat measurements until the next probe is conducted�

The Sensor also uses heuristics to adaptively adjust the frequency with which
active probes are conducted� thereby further limiting its intrusiveness� As long
as the measurements from uptime and vmstat remain relatively stable� the
Sensor assumes that the error in the estimate will also change little� and so
runs active experiments less frequently� On systems with very stable usage
patterns the Sensors may run active probes only once per hour� Conversely�
when utility estimates change signi�cantly between sequential measurements�
the Sensor increases the frequency of active probes in order to calculate more
accurate error estimates�

-30

-20

-10

0

10

20

30

40

50

60

70

0:00 0:30 1:00 1:30 2:00 2:30 3:00

E
rr

o
r 

in
 C

P
U

 a
v
a

ila
b

ili
ty

 e
s
ti
m

a
te

 (
%

 o
f 

C
P

U
 t

im
e

)

Time (hours)

-30

-20

-10

0

10

20

30

40

50

60

70

0:00 0:30 1:00 1:30 2:00 2:30 3:00

E
rr

o
r 

in
 C

P
U

 a
v
a

ila
b

ili
ty

 e
s
ti
m

a
te

 (
%

 o
f 

C
P

U
 t

im
e

)

Time (hours)

Fig� �� Improvement from active probing in estimates of CPU availability generated
using uptime �left� and vmstat �right�� The solid line shows the amount of error in
unadjusted estimates� the dashed line the error in adjusted estimates�

Figure � shows an example of improvement in CPU availability estimates by
incorporating infrequent runs of an active probe� CPU availability estimates
were generated on a UCSD Parallel Computing Lab workstation by an NWS
Sensor over a three�hour period� during which time a low�priority process
was running� Because neither uptime nor vmstat returns priority information�
unadjusted estimates of CPU availability� shown by the solid lines� di�er from
the actual values by as much as ��� of CPU time� Adjusting the estimates
using the results of active probing gives the improved estimates shown by the
dashed lines� During the three�hour test� the NWS sensor ran the three�second
active probe seven times� consuming less than ���� of the overall CPU time
in order to provide the improved estimates�

�



www.manaraa.com

��� Network Sensor

Because end�to�end network performance data between arbitrary machines is
not consistently available� NWS network Sensors rely on active network probes
exclusively when determining network load� Each probe consists of a timed
network operation� such as the movement of a �xed amount of data� or� in
the case of TCP� the establishment and dissolution of a network connection�
At regular intervals� each network Sensor connects to a set of peer Sensors
running on machines of interest and conducts one or more probes of di�erent
types to gather its measurements� To gather a set of end�to�end performance
measurements of any type from N Sensors would require N�

�N probes� To
avoid introducing this much network load� Sensors are organized hierarchically
so that an end�to�end measurement can be made for a representative subset of
the total Sensor population� These representative measurements can then be
used to describe the network performance between an arbitrary Sensor pair�
We discuss this hierarchical organization in greater detail in Section ��

Currently� the NWS network Sensor is capable of measuring three network per�
formance characteristics� small�message round�trip time� large�message through�
put� and TCP socket connect�disconnect time� The small�message probe con�
sists of a ��byte TCP socket transfer that is timed as it is sent from a source
Sensor to a destination Sensor and back� The socket connection used to facil�
itate the transfer is already established before the probe is conducted� Large�
message throughput �that is taken to measure available network bandwidth at
the application level� is calculated by timing the transfer of a message using
TCP and the acknowledgement of its receipt by the receiving sensor� The size
of the message� the sending and receiving socket bu�er requests� and the size
of the internal bu�ers used by each Sensor in the socket send�� and recv��

system calls are all parameterizable for each Sensor� Empirically� we have ob�
served that a message size of ��K bytes� sent using ��K byte socket bu�ers
and 
�K byte send�� and recv�� yields meaningful results�

It is important to note� however� that the network performance to the ap�
plication level can be a�ected dramatically by socket interface conditioning�
The vBNS ���	 for example� supports high throughput rates� both in aggregate
and end�to�end� if the RFC
��� large�window extensions are used to condition
the sockets used in the transfer� In our experience� however� most �standard�
socket communications do not use these extensions at the time of this writing�
Therefore� we have elected not to use them when the network Sensor mea�
sures deliverable network performance� We do plan to extend the system by
developing a large�window throughput probe� and to store� in persistent state�
both large window and standard performance measurements�

To make experiment results available to Forecasters� Sensors contact Persis�

�



www.manaraa.com

tent State processes to store the information� The location of the Persistent
State process that a Sensor will use for each of the measurements it gathers
is speci�ed when the Sensor is con�gured� When it is initialized� each Sensor
registers the location of the Persistent State process that stores its measure�
ment data with the Name Service so that measurement data may be located
by name�

� Forecasting

To generate a forecast� a Forecaster process requests the relevant measurement
history from a Persistent State process� Recall that persistent state is stored as
a circular queue by Persistent State processes� If the state is being continually
updated by a Sensor� the most recent data will be present when a Forecaster
makes its request� Ordered by time stamp� the measurements may then be
treated as a time series for the purposes of forecasting� The current NWS
Forecaster uses such time series of performance measurements to generate
forecasts of future measurement values�

An NWS Forecaster works only with time stamp�measurement pairs� and does
not currently incorporate any modeling information that is speci�c to a par�
ticular series� Instead� it applies a set of forecasting models to the entire series
and dynamically chooses the forecasting technique that has been most accu�
rate over the recent set of measurements� Notice that it is possible to use a
forecasting model to �predict� a measurement based on the measurements
that come before it in the series� When a forecast of a future value is required�
the Forecaster makes predictions for each of the existing measurements in the
series� Every forecasting model generates a prediction for each measurement�
and a cumulative error measure is tabulated for each model� The model gen�
erating the lowest prediction error for the known measurements is then used
to make a forecast of future measurement values� This method of dynami�
cally identifying a forecasting model has been shown to yield forecasts that
are equivalent to� or slightly better than� the best forecasting model in the
set ���	�

The advantage of this adaptive approach is that it is ultimately non�parametric
and� as such� can be applied to any time series presented to the Forecaster�
While the individual forecasting methods themselves may require speci�c
parameters� we can include di�erent �xed parameterizations of a particular
method with the assurance that the most accurate parameterization will be
chosen�

To allow new forecasting techniques to be integrated easily� the Forecaster
process consists of a driver and a set of compile�time determined prediction

�



www.manaraa.com

modules� The prediction module interface is well�de�ned� and each module
is assumed to implement a di�erent forecasting model� When a forecast is
required for a particular time series� the driver presents the time series to each
prediction module via the interface� and a forecast for the next value must be
returned� The driver keeps track of which prediction module yields the lowest
aggregate error measure over time and reports the forecast returned by that
module� Any method that can be coded in C which accepts a time series and
produces a short�term forecast can be integrated with the system�

��� Example Forecasting Results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fri Midnight Sat Sun Mon Tue

T
h

ro
u

g
h

p
u

t 
(m

b
it
s
/s

)

Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fri Midnight Sat Sun Mon Tue

T
h

ro
u

g
h

p
u

t 
(m

b
it
s
/s

)

Time

Fig� 
� The left graph shows four days of bandwidth measurements between UC
Santa Barbara and Kansas State University� The right graph shows the correspond�
ing NWS forecast values�

Figure � shows four�day traces of bandwidth measurements and forecasts gen�
erated by the NWS� Long�term trends in the measurements can be seen �
throughput tends to peak in the early morning hours� then drop sharply in the
afternoon and evening hours before picking up again as midnight approaches�
However� the large amount of local variance in the data obscures these trends
and limits the usefulness of performance predictions based solely on current
measurements� The analysis used by the NWS forecaster allows it to �lter
local noise and accurately track ongoing long�term trends�

��� Incorporating Additional Forecasting Techniques

We wished to be able to extend the NWS to incorporate other forecasting
services as they become available� In particular� more parametric modeling
approaches� each with their own set of abstractions� are certain to yield good
forecasts for speci�c resources� We would like to be able to incorporate other
statistical forecasting methodologies such as Semi�Nonparametric Time Series


�



www.manaraa.com

Analysis �SNP� �
�	� automated Box�Jenkins ��	 techniques� and wavelet�based
models ��
	� Since these more sophisticated techniques have larger compu�
tational requirements� generating forecasts on�demand according to the re�
quirements of the prediction module interface will not be feasible� We have
designed the NWS so that new complete Forecaster processes may be incor�
porated within the system� Indeed� any process that can retrieve performance
data from persistent state �via the Name Service and Persistent State pro�
cesses� and register itself with the Name Server as a Forecaster can be added
dynamically� while the system is running�

� Reporting Interface

The NWS exports a lightweight and portable C API that contacts the system
via sockets so that applications can quickly retrieve short term performance
forecasts� For infrequent or casual users� the system also provides continuous
access to NWS forecasts through the world wide web�

��� C API

The programming interface provided to applications is intended to be lightweight
and easily integrated into applications written for systems such as Legion �
�	�
Globus �
�	� Condor ���	� MPI �

	� and PVM �
�	� Two functions make up this
lightweight interface and separate the two phases of a forecaster connection�
InitForecaster�� and RequestForecasts���

The InitForecaster�� function opens a socket connection to a Forecaster
and passes a list of requested forecasts� This Forecaster spawns a new fore�
caster process to handle the client request� This child forecaster contacts the
Persistent State processes that maintain performance measurement data for
the requested forecasts� retrieves a recent history of measurements and initi�
ates the forecasting sequence by invoking an initialization function for each
predictor con�gured into the Forecaster� Priming forecasts in this manner al�
lows each predictor to perform initialization early so that subsequent forecasts
may be delivered more quickly�

When the application is ready to retrieve forecast data� it calls RequestForecasts��
to send a request message over the previously�established connection� After
updating each predictor with any measurements that have been generated
since the call to InitForecaster��� the connected forecaster process returns
a list of forecasts to the application� Because the forecaster process retrieves
only newly�generated data from persistent storage when a request is received�







www.manaraa.com

the time required to generate a forecast can be controlled by the application�
An application that requests forecasts frequently will experience a shorter
response time than one that waits for long periods between requests� Our
experience shows that applications that make frequent requests can receive
forecasts in near real time� The forecaster remains available to provide addi�
tional forecasts until the application exits�

��� CGI Interface

Interactive access to Forecasters is provided by a set of CGI programs ���	�
These programs generate time series graphs of performance measurements and
forecasts� Trends recognized and followed by the forecasting system are easily
discovered when shown in time series form� To allow users to search for either
long�term or short�term trends� the web interface provides ways to display
graphs showing information taken over time periods of various lengths� Other
options allow users to specify the image format and resolution and whether or
not the graph should be continuously updated as the NWS system generates
additional measurements and forecasts�

� Sensor Control

To make the system long�lived despite the lossy network connections and inter�
mittent machine failures that occur in any large distributed setting� the NWS
relies on adaptive and replicated control strategies� In particular� the Sensors
use adaptive time�out discovery and a distributed leader election protocol �

	
to remain stable while� at the same time� limiting the load they introduce�

The NWS attempts to measure end�to�end network performance between all
possible network Sensor pairs� However� all�to�all network Sensor communica�
tion would consume a considerable amount of resources �both on the individ�
ual host machines and on the interconnection network� if it were run asyn�
chronously using the entire network Sensor population� The possibility that
Sensor probes would collide and thereby measure the e�ect of Sensor tra�c in�
creases quadratically with the number of Sensors� To avoid Sensor contention
and to provide a scalable way to generate all�to�all network performance mea�
surements� the network Sensors are organized as a hierarchy of Sensor sets
called cliques� Each Sensor participating in a clique conducts inter�machine
experiments with every other clique member� but not with Sensors outside the
clique�

Sensors can participate in multiple cliques simultaneously� so the Sensor pop�


�



www.manaraa.com

ulation may be organized into a hierarchy by de�ning di�erent cliques for
each level in the hierarchy and promoting one representative Sensor from each
clique to also participate in the clique at the next higher level�

For example� consider a Sensor population consisting of Sensor processes run�
ning on 
 workstations in the UCSD Parallel Computation Laboratory �PCL��

 workstations at the San Diego Supercomputer Center �SDSC� � � and 
 work�
stations at the University of Tennessee �UTenn� �Figure ��� The most accurate
way to measure the end�to�end performance between all 

 Sensors is to pe�
riodically conduct the 

� � 

 � �
� network probes required to match all
possible Sensor pairs� However� the performance of a network connection be�
tween the PCL and SDSC is dominated by that of a UCSD campus�wide
ATM backbone link which must be traversed en route� All processes running
in the PCL observe approximately the same network performance when com�
municating with all processes at SDSC� Operating system�speci�c scheduling
vagrancies� bu�er management strategies� etc� make this assertion an approx�
imation� With less accuracy� then� it is enough to probe a single PCL�SDSC
process pair to determine what the performance of any PCL�SDSC connec�
tion will be� Similarly� between the SDSC and UTenn� the performance will
be governed by that of the general Internet� Indeed� the PCL and SDSC share
all but the campus backbone hop� As the Internet performance dominates� an
SDSC�UTenn measurement can represent any PCL�UTenn communication�
To organize this Sensor population as an e�cient hierarchy of cliques� we de�
�ne a PCL clique� containing the PCL Sensors� an SDSC clique containing
SDSC Sensors� and a UTenn clique containing UTenn sensors� We then de�ne
a UCSD�Campus clique in which one of the PCL machines and one of the
SDSC Sensors also participate� At the top level� we de�ne a National clique in
which one of the SDSC Sensors and one of the UTenn Sensors participate� The
end�to�end performance of an arbitrary pair of Sensors� then� is represented by
the end�to�end performance between Sensors in the nearest common ancestral
clique in the hierarchy�

We may choose �and we can recon�gure dynamically� the PCL to have sub�
cliques of its own� Similarly� if a new site wishes to join the National clique�
its representative Sensor can be added dynamically� Further� since the cliques
are independent� it is possible to impose di�erent �virtual� hierarchies over
the same Sensor population�

To reduce contention within a clique� only a single clique member conducts
experiments at any given time� This policy is implemented by passing a clique
token among member Sensors� The token contains an ordered list of all Sensors
in the clique� which is used to implement token recovery �described below��
Holding the token gives a Sensor the �right� to conduct any and all network

� SDSC is located on the UCSD campus�


�



www.manaraa.com

PCL

UTennSDSC
National

UCSD-Campus

Fig� �� Example Clique Organization

probes that involve other Sensors in the clique� When it has exhausted the
list of probes it wishes to conduct� it passes the token to the next clique
member� Once the token has visited all Sensors in the clique� it is returned to
the initiating Sensor �the leader� which is then responsible for re�initiating
it� The periodicity with which the clique leader re�initiates the token controls
the periodicity with which each Sensor conducts its probes�

Within a clique� the token may be unavailable either because a Sensor holding
it has failed� or because the network has partitioned� isolating one or more
Sensors from the one holding the token� Any token recovery mechanism must
be able to ensure that the system continues to function under either circum�
stance� Before the leader re�initiates a token it times a complete token circuit
and sets a time�out value for the token �we describe the method by which
it determines this time�out value in the next subsection�� Once the time�out
has been determined� it is carried in the token when it is re�initiated� Each
Sensor then calculates a local time�out based on the last time it held the token
and the time�out that the leader has determined� If the local time�out expires
before a Sensor receives the token again it assumes that either the token has
been lost or the network has partitioned� It then generates a new token� marks
itself as its leader� and initiates it into the system�

In this way� if the token has been lost due a Sensor failure� a new one will be
initiated� Note that the Sensors within a clique receive the token in a particular
order� and� therefore� time�out in the same order� So the expected behavior is
that the next Sensor in the list will become the leader by initiating the new
token� Alternatively� if the network partitions into disjoint sets� at least one
token will be started in each set when the time�out occurs� It is possible� using
this protocol� for multiple tokens to be present if a time�out occurs but the
network has not partitioned� or if a true partition has been eliminated and
the partition sets merged� To prevent multiple tokens from consuming network
resources inde�nitely� tokens are sequenced� and any Sensor encountering an
old token discards it rather than propogating it to the next Sensor�


�



www.manaraa.com

��� Adaptive Time�out Discovery

The stability of the token protocol depends on the clique leader�s ability to
determine when the token should be timed out� If the time�out value is too
small� extra tokens will be spawned� consuming greater amounts of network
resource and increasing the intrusiveness of the system� If the time�out value
is too large� the system may remain quiescent while it waits for some Sensor
to time�out and re�initiate the token after a failure� Moreover� the token cir�
cuit time is a�ected by any performance variations in the network the Sensors
are using to communicate with each other� The Sensors� therefore� require a
prediction of what the time�out value should be� given the performance vari�
ations of the network� To make this prediction� the Sensors use the prediction
techniques that are integrated with the Forecasters� The clique leader passes
a time series of circuit times to a local Forecaster interface and receives back
a predicted circuit time and an estimate of the variance associated with that
prediction� The time�out is then set to be the estimate plus three estimated
standard deviations� When a token times out� the time�out is increased by
a �xed amount until the system can �relearn� what the new time�out value
should be� In this way� each clique adaptively discovers what the appropri�
ate time�out value should be� given the dynamically changing performance
characteristics of the underlying system�

� Related Work

Resource performance monitoring and forecasting is an active area of re�
search� Internet performance monitoring and analysis tools such as TReno ���	�
Pathchar �
�	� and Carter and Crovella�s bprobe�cprobe �
��	 attempt to
discern Internet congestion characteristics by actively probing the network
between designated hosts� We have attempted to design the NWS Sensor in�
terface so that data from these tools can easily be incorporated for forecasting�
Topology�d ���	 is similar to the NWS in that it conducts a series of perfor�
mance experiments �using both UDP�IP and TCP�IP� and then automatically
analyzes the resulting data� One of its goals is to provide resource scheduling
mechanisms such as Smart Clients ���	� AppLeS ��	� and MARS �
�	 with infor�
mation depicting the �state� of the network� Important di�erences� however�
concern Topology�d�s scalability and periodicity� The performance topology
graph it produces is calculated relatively infrequently �once per hour in ���	�
using N� measurements� The NWS is attempting to capture and forecast
higher�frequency dynamics� Typically� NWS network Sensors make measure�
ments once every 
� to �� seconds� The clique protocol and clique hierarchy
allow measurements to be taken at this frequency with limited intrusiveness
while also providing scalability� Also� the NWS measures and forecasts the per�







www.manaraa.com

formance of resources other than the network� ReMoS ��
	 is a generalizable
resource monitoring system for network applications� It maintains both static
and dynamically changing information� but it does not� at present� include a
forecasting component ��	� Its API for accessing the information� however� is
similar to that provided by the Globus MDS �
�	 and Legion Resource Direc�
tory ��	� but more focused on network information� It should be possible to
integrate NWS forecasting techniques with both Topology�d and ReMoS as
the relevant APIs are simple and portable�

	 Conclusions and Future Work

The implementation of the NWS relies on adaptivity to enable stability� ac�
curacy� non�intrusiveness� and extensibility� For example� an early version of
this implementation used �xed time�outs to control clique�token recovery� We
found that such a �xed time�out tended to cause cliques either to pause for
long periods of time or to initiate the clique recovery algorithm frequently�
Even local�area cliques experienced enough variation to make �xed time�outs
impractical� Moreover� using periodic local clocks �i�e� each Sensor probes the
network according to its own local periodicity� causes Sensor contention that
is statistically signi�cant ��
	� Our implementation of the NWS� therefore�
gathers more accurate information as a result of its adaptive behavior�

The adaptive forecasting model selection algorithm discussed in Section 

and ��������
	 allows the Forecasters to operate in a non�parametric way which
promotes extensibility in two ways� First� new and di�erent performance mea�
surement time series may be considered easily� Any series may be presented
and� assuming that the suite of models is rich enough� a forecast can be ob�
tained� In ��
	 we showed a comparison of the forecasting accuracy between
sophisticated time series models based on maximum likelihood techniques �
�	
and the forecasting suite we have implemented �described in ���	�� The per�
formance of the currently implemented suite is excellent compared to more
powerful techniques for a variety of di�erent metacomputing performance mea�
surements� Second� the adaptive method allows new forecasting models to be
incorporated easily� Any model that can be implemented using the predictor
module interface can be added to the driver loop in the Forecaster� If it is
successful �in terms of its forecasting error performance� it will be chosen�

The longevity of the system and its potential ubiquity stem from its stability�
the robustness of its implementation� and its scalability� The implementation
platform of TCP�IP sockets and Unix provides a robust and portable set
of programming abstractions for a large variety of metacomputing settings�
In particular� TCP is well suited to both local area and wide area network
settings� The clique abstraction implemented by NWS Sensors provides for


�



www.manaraa.com

scalability and stability in the system along with limiting its intrusiveness�
Perhaps most important is the �exibility that the cliques support� It is pos�
sible� for example� to build star topologies ���	 or other virtual topologies by
de�ning di�erent sets of overlapping cliques� We plan to use the NWS as a
vehicle for our future research in performance monitoring and forecasting�

We plan to continue to enhance the NWS both by adopting new metacom�
puting standards as they become available� and by incorporating the fruits of
the research that is facilitated by the system itself� We are currently working
to implement the Name Server using Lightweight Directory Access Protocol
�LDAP� ���	 as this facility is becoming more commonly available� In addition�
we are exploring new forecasting methodologies and new performance moni�
toring facilities appropriate for di�erent distributed computing environments
�e�g� Java��

References

��� D� Andresen and T� McCune� Towards a hierarchical scheduling system for
distributed www server clusters� In Proc� of the Seventh IEEE International
Symp osium on High Performance Distributed Computing�HPDC�� �to appear��
Chicago� Illinois� July �		�� IEEE Computer Society�

��� F� Berman� Computational Grids� The Future of High�Performance Computing�
C� Kesselman� and I� Foster� editors� to appear� �		��

�
� F� Berman� R� Wolski� S� Figueira� J� Schopf� and G� Shao� Application
level scheduling on distributed heterogeneous networks� In Proceedings of
Supercomputing ���	� �		��

��� G� Box� G� Jenkins� and G� Reinsel� Time Series Analysis� Forecasting� and
Control� 
rd edition� Prentice Hall� �		��

��� R� Carter and M� Crovella� Dynamic server selection using bandwidth probing
in wide�area networks� Technical Report TR�	����
� Boston University� �		��
available from
http���cs�www�bu�edu�students�grads�carter�papers�html�

��� R� Carter and M� Crovella� Measuring bottleneck link speed in packet�switched
networks� Technical Report TR�	������ Boston University� �		�� available from
http���cs�www�bu�edu�students�grads�carter�papers�html�

�
� H� Casanova and J� Dongarra� NetSolve� A network server for solving
computational science problems� In Proc� of Supercomputing��	� Pittsburgh�
Department of Computer Science� University of Tennessee� Knoxville� �		��

��� S� J� Chapin� J� Karpovich� and A� Grimshaw� Resource management in legion�
Technical Report CS�	���	� University of Virginia� Department of Computer
Science� May �		��

�	� T� DeWitt� B� Lowecamp� N� Miller� D� Sutherland� T� Gross� P� Steenkiste�
and J� Subhlok� A resource monitoring system for network�aware applications�
Technical Report


�



www.manaraa.com

CMU�CS�	
��	�� Carnegie�Mellon University� december �		
� available from
http���www�cs�cmu�edu�afs�cs�user�jass�www�index�html�

���� S� Fitzgerald� I� Foster� C� Kesselman� G� von Laszewski� W� Smith� and
S� Tuecke� A directory service for con�guring high�performance distributed
computations� In Proc� 	th IEEE Symp� on High Performance Distributed
Computing� August �		
�

���� M� P� I� Forum� Mpi� A message�passing interface standard� Technical Report
CS�	���
�� University of Tennessee� Knoxville� �		��

���� I� Foster and C� Kesselman� Globus� A metacomputing infrastructure toolkit�
International Journal of Supercomputer Applications� �		
� to appear�

��
� I� Foster and C� Kesselman� The globus project� A status report� In IPPS�SPDP
��
 Heterogeneous Computing Workshop� �		��

���� R� Gallant and G� Tauchen� Snp� A program for nonparametric time series
analysis� In
http���www�econ�duke�edu�Papers�Abstracts�abstract�������html�

���� H� Garcia�Molina� Elections in a distributed computing system� IEEE
Transactions on Computers� C�
������	��	� Jan �	���

���� J� Gehrinf and A� Reinfeld� Mars � a framework for minimizing the job execution
time in a metacomputing environment� Proceedings of Future general Computer
Systems� �		��

��
� A� Geist� A� Beguelin� J� Dongarra� W� Jiang� R� Manchek� and V� Sunderam�
PVM� Parallel Virtual Machine A Users� Guide and Tutorial for Networked
Parallel Computing� MIT Press� �		��

���� A� S� Grimshaw� W� A� Wulf� J� C� French� A� C� Weaver� and P� F� Reynolds�
Legion� The next logical step towrd a nationwide virtual computer� Technical
Report CS�	����� University of Virginia� �		��

��	� V� Jacobson� A tool to infer characteristics of internet paths� available from
ftp���ftp�ee�lbl�gov�pathchar�

���� R� Jones� http���www�cup�hp�com�netperf�netperfpage�html� Netperf� a
network performance monitoring tool�

���� B� Lowecamp� N� Miller� D� Sutherland� T� Gross� P� Steenkiste� and J� Subhlok�
A resource query interface for network�aware applications� In Proc� �th IEEE
Symp� on High Performance Distributed Computing� August �		�� available
from http���www�cs�cmu�edu�afs�jass�www�papers�html�

���� M� Mathis and J� Madhavi� Diagnosing internet congetstion with a transport
layer performance tool� In Proceedings of INET ��	� �		��

��
� Network weather service� http���nws�npaci�edu��
���� K� Obraczka and G� Gheorghiu� The performance of a service for network�aware

applications� In Proceedings of �nd SIGMETRICS Conference on Parallel and
Distributed Tools� August �		�� to appear�

���� R� Ogden� Essential Wavelets for Statistical Applications and Data Analysis�
Birkhauser� �		
�

���� N� Spring and R� Wolski� Application level scheduling� Gene sequence
library comparison� In Proceedings of ACM International Conference on
Supercomputing ���
� July �		��

��
� T� Tannenbaum and M� Litzkow� The condor distributed processing system�
Dr� Dobbs Journal� February �		��

���� vBNS� http���www�vbns�net�


�



www.manaraa.com

��	� R� Wolski� Dynamically forecasting network performance to support dynamic
scheduling using the network weather service� In Proc� 	th IEEE Symp� on
High Performance Distributed Computing� August �		
� to appear�

�
�� R� Wolski� Dynamically forecasting network performance using the
network weather service� Cluster Computing� �		�� also available from
http���www�cs�ucsd�edu�users�rich�publications�html�

�
�� R� Wolski� N� Spring� and C� Peterson� Implementing a performance forecasting
system for metacomputing� The network weather service� In Proceedings of
Supercomputing ����� November �		
�

�
�� W� Yeong� T� Howes� and S� Kille�� Lightweight directory access protocol�
March �		�� RFC �


�

�

� C� Yoshikawa� B� Chun� P� Eastham� A� Vahdat� T� Anderson� and D� Culler�
Using smart clients to build sclable services� In Proceedings of the USENIX
���� Technical Conference� �		
�


�


